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ABSTRACT

The second-order theory of the continuum in the Cohen extension of a set-
theoretic universe is interpreted in the monadic theory of the real line and
may be interpreted in the monadic topology of Cantor’s discontinuum as well.

Introduction

Assuming the Continuum Hypothesis (CH), Shelah [Sh 42] proved the
undecidability of the monadic second-order theory of the real line by interpret-
ing true first-order arithmetic in it. But the monadic theory of the real line
happens to be more expressive ((Gu 2], [GuSh 123], [GuSh 143)). In the last of
the three papers, the second-order theory of the continuum in the Cohen
extension of the universe has been interpreted, under CH, in the monadic
theory of the real line as well as the monadic theory of any non-modest short
chain. In this paper, we get rid of CH.

To simplify the exposition, we treat the case of the real line only. For the
reader’s convenience, the proof is self-contained. It is based on the notes of
lectures in Rutgers and Jerusalem in Fall 1986.

NoTATION. (We work in the topological space “w rather than in the
standard real line.)
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“g  has the Tychnonov topology (considering w as a discrete space).

«,¢ denote non-empty regular open subsets (of “w, i.e., they are equal to
the interior of their closure).

cl(A4) is the closure of A.

M, (for a topological space X) is the model (2(X), C, cl) where £(X) is
the power set of X, C is inclusion, and cl is the closure operation.

Welet X, Y, Z, T be monadic variables for a subset of “w, X=7Y iff their

symmetric difference is nowhere dense and X C* Yif X — Yis nowhere dense.

§1. The basic interpretation

1.1. DerINITION. (1) For any formula ¢( «, @) (not necessarily monadic)
let

val ¢(«, a)= \U{ «: « open regular subsets of “w, and “w F ¢( «, d)}.

(2) We call ¢( «, a) regular if val j¢( «, ) is open regular; ¢( «, z) is regular
if every ¢( «, d) is.
(3) Wecall p(«, Xy, ..., Xi; d) regular (in «, X, . .., X;) if

k
vavxl,...,XkVX;,...,X,;[/\ XN e=X/N a—

I=1
(e, Xy, ..., X )=9( 4, f,---,X;'c;d)]-

1.1A. OBSERVATION. (1) ¢(#,d4)=(V &' C «)3 «” C «)p(«”,ad) is
always regular and val ¢( #, ad)=val ¢( 4, a) for every 4.

Q) (% Xy, ..., X3 P) « (Ve'C w) (3”"C ) (AX],....X0)
ALy Xin &"=X,N «"rp(e”, X,...,X;;P)] is always regular in
w X ..., X

(3) We will assume without saying that we regularize our formulas this way.

1.2. LEMMA. There are regular monadic formulas y,(«,...), ¥i( «,...),
v.(«,...) and a sequence (D] :i <2™) of dense countable pairwise disjoint
subsets of “w (we let D" = \U{D; : i <2™}) such that:

(1) for some W, C “w — D", for every X C D',

val y,(« X; D", Wa)EvaII‘(V N XC an D{>,

i

(2) for some W, C “@w — D', for every X C D',
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val w,(« X;D’, W,,)_=_val”<V eNX= N D{) ,

(3) for every symmetric two-place function R from {i:i<2%} to
{«C “w: « open regular} U { &}, for some subset Wy of “w (and W,
as in (2)), for every X, Y C D',

val y(« X,Y; D", W,, Wg)=U {«:forsome i #j, «C R(i, ),
uNX=wenND],eNY=«nDj}.

ProoF. This is presented in Section 3.
Note we can agree R(i, )= O&.

1.3. CONVENTION. Let (D]:i<2%) beasin 1.2, W,, Wy be as in 1.2(2),
1.2(3) respectively. For R a symmetric two-place relation on {i: i <2%}, we
identify it with the function R":

°w  ifi #j, FR[i,]]
R, ))=

[%] otherwise.

1.4. CLAaiM. There is a finite sequence W (of subsets of “w) and regular
formulas ¢nu’ q’ze’ ¢suc, ¢ad’ ¢orda ¢ml SUCh that:
(1) for X C “w, val [¢.(«, X; W")]E U{ «: for some k, 2N X = «N D}}

[the intended meaning is that X represents a natural number].

2 for X C “w, val [9,.(«, X; W)= U{«: «N X = «n D}}

[the intended meaning is that X represents zero].

val_[po.( 2, X, Y; W)= U{«: forsome k, «N X = «N Dj,
3)
«NY = a«nDiy,}

[the intended meaning is that Y is the successor of X, i.e., the corresponding
numbers are like that].

val [¢.4( 2 X, X;, Xs; WO)]E U {a : for some k,, &y, ks < w,

@ 3
k3=k2+k1 and A aﬂX1== lénD”;,}

=1
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[the intended meaning is addition].
5) val_[@oa( 2, X; W] = U{ « : forsome i, «N X = «N D]}
[the intended meaning is that X is an ordinal, i.e., represents one].

val, [g( 2 X;, X5, Xy WO = U {u : for some ki, ky, ky < w,

(6) 3
k3=k2Xk1and A ManI= xﬂD;ﬁl}

=1
[the intended meaning is multiplication}.
ProoF. Easy (was done in [Sh 42]), but here are some new details. Let
R ={{k,0 +k}: k <w},

R ={{k+lLo+k}): k<w),
and, for/=1,2,3,

Rly = ({01 + k) + 0¥ (1 + k) + o(1 + k), ki } :
k; = k, + k, are natural numbers},

Ry = {01 + k3) + 0X(1 + k) + (1 + k), k;} -
k; = k, X k, are natural numbers}.

Let m’::c= WRL’ W:d = WR;, W'lnl = WR:nl fOI’m = l, 2, 1= 1, 2, 3. Let
by = U Dy,

u_/(): (Dr’ D(;s DI{J) Was Wsluc‘,) Ws%:ca W;dy anl)i=1.2,3'
Now we let

Ounl 2 X; W) £ [N X C D AWy(4 20 X; W,)),

0u( 2, X; W) € [N X = 2N Dj),
Oucl @, X, Y3 WO) = [0, X; WO) A 0y (22, Y WO A(3 Z)[Goral 20 Z; WP)
ANaNZCD —Dyay(w, X, Z, Wa Ao, Y, Z; Wa )l
Similarly for ¢,4 and ¢,.

1.5. DEFINITION. Let the m_onadic formula 6,( «, I':) say that T satisfies all
reasonable properties of what W9 satisfies in « (we delay the question of “every
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natural number is standard”™), i.e., lg(f) = lg( W°) and 6, is the conjunction of
the following formulas (all saying what occurs inside « only):
(1) every natural number has a unigue successor, i.e.,
(VY X)gnel 4 X, TV~ (3 V(% X, Y, T)] and
(VXXV Y)YV Yol@ue( 4 X, YA @2, X, Yo, T) > Y N =Y, N &];
(2) a natural number is a successor iff it is not zero;
(3) every pair of natural numbers has a unique sum;
(4) every pair of natural numbers has a unique product;
G)x+(+DH)=x+py)+ L, x+0=1x;
6) xX(y+1D=xXy+x,xX0=0;
(7) addition and product are commutative;
(8) x+1=y+ 1 implies x = y.

1.5A. ConNVENTION. Omitting «in 6, means taking “w. Similarly every-
where else.

1.6. CLaM. (1) k 6, W] (for the W? from Claim 1.4).
() If & 0w, W] then we can find D, (n < w) pairwise disjoint such that:
(@) ¢.(«, Dy, W),
®) gul @ D W),
(C) (osuc( &, Dm Dn+l; W)> _
(d) ¢ad( &, Dm Dms Dm+n; u_/),
(C) ¢ml( «, Dn’ Dm’ Dmxn; W)
(3) If D, (n < w) satisfies (a), (b), (c)then A, ., D, N «=D, N w.

PrOOF. Easy.
As we have said, we desire to express “ W? code standard natural number only”.
1.7. DEFINITION. Let 6, «, Y) say that, hereditarily in «:

0, Y)AWIY, )N’ C an(a, Y, YINGP (2, Y, Y)]
where
0%( «, );’, );)

def

= 04, Y)VA(Y 2, X, Xp) [Pl 2, Xy Xy; YY)
(3 X} 2 XX A X3 2 Xp)@ue( 2, X, X3, Y,

def

04, Y, Y) = (Y X)@u( 2 X; Y) = (X)X C X)pu( @, X'; Y)].

1.8. CLam. (1) k 6, W],
(2) If F 8[W]and D, (n < w) are as in 1.6 then for every X
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val_ ¢, (2, X; W)=val V(2N X = «nD,).

(3) The parallel of (2) holds for 6, «, W).

Proor. (1) Immediate.

(2) If not, let X C “w be such that some open regular «, is disjoint from
val (N X = «N D,)forevery nbut # C val ¢,,(« X; W).

Fix «; X. We define by induction on n, X, C 4 such that 4 C
val, o(«, X,; W), a4 Cval, 9uc( 2, X,, X,o1; W) and 4 is disjoint from
val («N X, = «n D,) for every m (X,=X, of course). Let X, C X, be
countable and dense in «;, A, ., X, N X} = . There is an autohomeomor-
phism F of “w taking D} to X/, for n < w and «, to itself (Cantor Theorem).

Now F( W7°), t, Can serve as Y, « contradicting the second part of GZ(W).

1.8A. REMARK. Applying this to other topological spaces, we can replace
Cantor Theorem by strengthening of 1.2. Similarly in 2.10.

§2. Interpreting the universe after forcing

2.1. DEFINITION. Let Q be the forcing notion: open regular subsets of @),
with the order: the converse of inclusion (this is the Cohen forcing).

2.1A. CONVENTION. W denotes a sequence such that k 6,[W], D,(W)
(n<w)areasin 1.2, D(W)=(D,(W): n<w). In this section D denotes a
w-sequence of dense pairwise disjoint subsets of “w.

2.2. DEFINITION. (1) We say that X D--represents in 4 a Q-name g of 2
natural number if:

@) w= N val,go(a X; W),
(b) [Fo “n is a natural number”,
(c) forevery k <wand «C «

ullg“n=k" ffenX=a«nD,.
(2) If #y="w we omit it.

2.3. CLamM. (1) Suppose F 02[W]. F ¢l X; W) iff x Ii(W)—represents
in « some Q-name of a natural number.

Q) IfXxX D -represents in «# a @-name 1 (of a natural number), then X D-
represents # in every «’ C «.

PrROOF. Suppose F ¢,.(«, X; W). We know that
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K={¢:¢C zand sNX= aﬂD—,,(W)forsomen=n(a)}

is such that

(*) (V 2’ C 2)(3 «” C &) «"EK).
Let { #,: «<A°} be a maximal subset of K such that any two members are
disjoint. Clearly U, «, is a dense subset of « [by (*)]. We define 5 by

n is n if, for some o, 2, is in G, and #, N D_,,(VI_/) =4 NX
(G, is the generic set) and zero otherwise.

Easily, n is a Q-name of a natural number and X D ( W)-represents it in «. The
other direction is easy too.

2.4. CraM. Suppose F 0,] «, W]. If nis a Q-name and « |, “n a natural
number”, then some X D(W)-represents 7 in «.

PrROOF. Let {#,:a<a,} be a maximal antichain of members of Q,
#, C «, u,force avalue to 11, say n(a). So { #,: a <o} isa fa_mily of pairwise
disjoint regular open subsets of ». Let X = U, (#, N D, (W)).

2.5. CLamM. Suppose k G,[W]. If for / =1, 2, 3, X, D(W)-represents in «
the Q-name 7, of a natural number, then for every «C «:

@) 2o “m =0 iff g (&, Xy; W),

®) sllp“m=m"if enXi=eN Xy,

© ¢lo“m+1=m" if puc(4 X, Xp; W), _

@) oo “m +m=10" i pua( 2 X1, Xo, X5, W),

© oo “m Xnm=um"iff ou( s X, X5, X3; W).

Proof. Easy (from definition).
Next we deal with reals, i.e., sets of natural numbers.

2.6. DEFINITION. We say that Y D-represents in « a Q-name aof a set of
natural numbers if, for every «C « and k < w,

@) ¢|p“kE€Q” if en D, C* 2N Y,

®) ¢« “k€a” if eNYND,=I.

2.7. DEFINITION. ¢,(«, 7Y, W) is
(V ¢C «)(V X)), X; W)y~ (3 #/C o NXCYVvenNXNnY= )]

2.8. CLAIM. Suppose F 0] «, W].
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1) Foua Y, W) iff Y D( W)-represents in « some Q@-name of a set of
natural numbers.

(2) Every Q-name g of a set of natural numbers is D (W)- represented by
some Y.

3 Y D- represents in « a Q-name g of a set of reals then Y D-represents g
in every «’' C «.

PrOOF. (1) Suppose F ¢,(«, Y, W). Define g by:

(*) kEq iffthereis «C « «E (G, (the generic subset) and «N D(W)CY.

It is easy to check that it is as required. For the other direction suppose X
D(W) represents in « some J-name ¢ of a set of natural numbers. Now for
every +C « and X such that ¢, (¢ X; W), first find % C « and k such that
N X= N Dk(W) (see choice of ¢,,), next choose « C #; such that
o o “kE€Ea” or ¢ ||y “k&q”. If the former holds then (by Definition 2.6)
s N Dk(W)C* o N Xhence, for some &’ C ¢, ' N Dk(W)C ot N X;s0 & is
as required in the definition of ¢,. If the latter (¢« | “k €4”) holds, then
(by Definition 2.6) # N Dk(W) NX=; so forsome ¢’ C ¢ N Dk(W) N
X = and so ¢~ is as required in the definition of ¢,.

(2) Let, for each k, { #*: a <a;) be a maximal antichain of Q, such that
uf o “k€a” or 4f ||y “k&a”. Let

Y=U{DW)N & k<w, a<ay, of o kEa”}.

As (D,,(W) :n < w) are pairwise disjoint, Y is as required.
(3) Trivial.

2.9. CLAaM. Assume F A W], X D_( W)— represents in « the Q-name nof a
natural number, and Y D (W )-represents in « the Q-name g of a real. Then for
eC .

eNXC*Y  iff e-“n€Eaqa”.
Proor. Check definitions.

2.10. DErFINITION. We say that Wt = W*“(W) D-represents in « a
Q-name 4 of a set of reals if:
(@) «|lo“4is aset of reals”;
(b) F 6w W*;
(©) «N D (W*C*D,;
(d) TFAE for all Q-names g of a real and «C «:
@ olo“a€d”,
(B) there is X such that
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@) F Poral s X WOAY &/ C 2)00( &, X; W),
(i1) for every ¢/ C ¢ and k < w,
o o k€8”  iff k w.(o, D(W*), X; D*, W2, W)
(D*, W* — from W*).
REMARK. On y, see 1.2(3).

2.10A. CLAalM, Suppose F 6, «, W*] For every Q-name 4 of a set of reals
there is W such that W+ = W*A(W) D(W*) represents 4 in «.

ProoF. Choose countable dense D) C D,, and so there is an autohomeo-
morphism F of “e taking Dj to D;. Let {g, : a < 2%} list all Q-names of reals.
For each a, klet { ¥, : { <{.} be a maximal set of pairwise disjoint members
of Q such that

w; o “a.E4 and kEg,”.
Define a two-place function R from 2% to Q:
R(@+a,k)=Rk, 0 +a)=U{k: (<)}
(i.e., the interior of the closure of this union) and
R(a,f)=Q when(a<waf<w)v@ZwArf = o).
Now we apply 1.2(3) and get W;. Lastly W o Wy is as required.

2.11. DEFINITION. Let ¢y («, W+, W) (where W+ = W**(W)) be the
conjunction of the following formulas:

@) F O «, WH],

(b) F 6 2 W],

©) (VX[ X; WH—=(AV)X C*Y Ag(a, Y; W)L,

2.12. CLaiM. Suppose F 02[_14_’]. W+ 15(W)- represents in « a Q-name 4 of
a set of reals iff F ¢, («, W+, W).

2.13. CLaM. Suppose F O «, W] YD(W) represents the Q-name aofa
real in «, and W+ D(W) represents the Q-name A of a set of reals in .
Then for «C «

s Q€4 iff Guen(a ¥, W, W)

where ¢, formalizes (d) of 2.10, i.e.,
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2.14. DEFINITION. @nn( %, Y; W*, W) is (where W+ = W* (W)

(3 X Pora( 0, X; WAV 0C )90, (25 X; W) )
A (V ”g ”)(vzb ZZ)[[(onu( &, ZI, W) A ¢nu( &y ZZ; W*) A {% g Zl]]
=[oN Z, C*Y oyl o, Zy, X; D*, W, WL

Proor oF 2.13. Check.

2.15. DerFINITION. We define the forcing language L (for second-order
theory of the continuum under the forcing Q) (it is a slight variant of the
standard one). We have variables of three kinds: n (Q-names of natural
numbers), g (Q-names of reals, i.e., sets of natural numbers), and 4 (Q-names
of sets of reals). We have the individual constant 0, function symbols for
addition and multiplications of natural numbers, the successor relation on the
natural numbers, equality between natural numbers, and two membership rela-
tions: n € g, a €4 (so a, = g, is not an atomic formula). From the atomic formulas,
the formulas are generated as usual (with three kinds of quantifications).

REMARK. We do not distinguish strictly between Q-names and variables
over them. We know:

2.16. THE ForRCING THEOREM (in this context). For any formula
O(ny,ny...,8,8...,4, 4, .. )ELand €Q, TFAE
@ zllob(m, ..., 0,%,.... 4,4, .. )
(B) for any G C Q generic over the universe and such that +€G, if nj=
mlGl, a; = a[G), A= A4,[G} then O[n, ny, ..., a4, ...,4,,Ay,...]
holds.

2.17. MAINLEMMA. Forany formula 9(_{:1, v @iy 4,,...)ELwecan
compute a formula ¢( «, X, ..., Y, ...; Wi, ..., W) such that:

@ Suppose ||, 6 , W_] and X, D(W )-represents the Q-name n of a natufal
number in «, Y D(W)-represents the Q-name g of a real in z«, and W}
D (W )-represents the Q-name 4, of a set of reals in «. Then

wlFobWs ... @srdir--) M E ol Xy Yo s W, WL

ProoF. By induction on 6.

For atomic formulas: see 2.5 (on formulas on natural numbers), 2.9 (on
n€gq)and 2.13 (on g €4).

For Boolean combinations of atomic formulas there are no problems.

For § = V n 6, use 2.3, 2.4 and the induction hypothesis.
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For 8 = V g 6, use 2.8 and the induction hypothesis.
For 6§ = VA4 6, use 2.10A, 2.12 and the induction hypothesis.

2.18. ConcrusioN. For every sentence 8 in the language of the second-
order theory of the continuum we can compute a sentence ¢/ in the monadic
theory of “w such that:

""Q “0” if M(‘“w) Eof.
PrOOF. By 2.17 there is ¢, #, W) as there. Let
o = (IWNY )6(W) A gyl 2, W)].

As Q is homogeneous and is Cohen forcing, we finish.

§3. The combinatorics
For diversity, we do not copy [GuSh 143].

3.0. ConvENTION. B denotes a Hausdorf first countable topological space
with =< 2% open subsets (or just =< 2% perfect subsets) (the main case is
B = “w). A will denote a subset of B, D =B\ A. The reader can restrict
himself to the case B = “w, A = {n €B: 1 not eventually constant} without
great damage (just lose, e.g., non-modest subsets of “w).

3.1. NotaTION. (1) P C B is perfect in A if it is closed s.t.. if x€ « N P,
[x EAv x not isolated] then (3 Py, P,, «,, «,)

[a,ﬂ ¢2=gAA12_1=(P[g l&]/\P[ﬂA #Q/\P[=C1(P[\A)/\ lélg lé)]
andPNA+J.

2y D =(D;:1<n), welet

PR;(D_)={P:PgBis perfectin A4, and c(P N D)) 2PN Aforl<n}.

(3) Pry(W, D ywith D = (D;: < n) as above means: there is a P, perfect in
A, ANPCWu U,D, PEPRLYD).
(4) In (2) and (3) we allow one to omit the superscript n.!

3.2. CONVENTION. D denotes a finite sequence of subsets of B\A=D
such that cl(D,) 2 4 U {x €D : x not isolated}.

t Formally, PR was not defined for an infinite sequence, but the definitions and proofs work for
countable sequences; however, we do not need them as the formulas are finitary.



346 S. SHELAH Isr. J. Math.

3.3. DEFINITION. We say that we can separate {D?:i<a“} from
{D!: i <a®} inside 4, if there is W C A such that

(@) for i <a®, Pr(W,D?),

(B) for i <a®, Pr,(W, D}).

Why does assuming CH simplify matters?

3.4. CLaim (CH). Suppose {15,3 ra<a?l, {[3,,’,’ ra<a®}l are given,

la®|,|ab| =2%and

(%), if P*EPR(D?), P E€PR(D}) (e <a’ B <ab) then: for « an open
subset of B, «N P* N A # & implies «N P* N AZP* N P?;

(*), Q@ — D is not meager (as a topological space in the induced topology)
when Q EPR () (oreven Q €EPR, (D_f) for some y implies Q N A not
included in the union of P, C 4 (I < w), P, perfect in A4).

Then we can separate {D?: a <a“} from {D}:a<a?).

REMARK. We use only the existence of a family of = 2% perfect separable
sets which is dense enough in the family of perfect sets. This is relevant to 3.6
t00.

PrOOF. Let {Q;:i < 2™} list the perfect subsets in A (of B). We know that
w.lo.g a® al=2%,

We choose, by induction on a, P, such that:

(a) P.EPR,(D),

(b) if B,y <a and Qs EPR(D?) then P, N Q; C D.
If we succeed we shall let W = U{P,:a<2%)}. Then requirement () of
Definition 3.3 holds by demand (a). Next, (f) will hold; for, suppose
Pr, (W, 15,?), so that there is PEPR, (15,’3) such that P N 4 C W. But there is 8
such that P = @, so

wnP=U (BnQ)uDC U (P,NQ)uD.
i i<p

But |#| = R,, and by (¥),, U,-<,, (P: N Qp) is a meager subset of g — D, but by
the assumption above it is equal to @y — D, so this contradicts (),.
The choice of P, is possible, by the following claim.

3.5. CLaim. IfPEPRY(D), D, C Pisnotdense in Pfor/ < I(*) < w, then
there are (P, : v & “2) such that

(a) P,CP,

(b) P,€PR,({D;: I <I(x))),

() P,nP,C U,Dforv+n.
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PrOOF. As in [Sh 42] §7.

3.6. CLaiM. A sufficient condition for the existence of W separating
L*={D?: a<a®) from L® = {D?: a <a*) inside 4 is:
(*) there exist families K*, K~ of perfect subsets of 4 such that
(i) PR,(DHNK* # & fora<a®
(ii) if Q EPR (DY), (a < a®) then there is a perfect Q’ C Q such that
Q'€EK™;
(iii) if QEK~, PEK* then |PNQ| =R, (or even just
|[PNQNA| =k, where k is a fixed cardinal < 2%);
(iv) we demand that for every Q from K~, @ — D has cardinality 2%.

3.6A. REMARK. If we wish, in Definition 3.1(3), replace “4 NP C
wu U,D” by “4 N P — D C W”; it suffices to strengthen (i) to:
(i) for every a<a“thereis PCPR(DHNK*, P— U,D, C “w — D.

REMARK. Instea_d of (ii) + (iii) it is enough to require:
(iiY no QEPR (DY) is included in the union of < 2% many members of K*.

PROOF. Let {Q;:j <2%)} be a list of the members of K~. We choose, by
induction on a < 2%, P,, P’ such that:

() P,EPR,(D%, P,C P.EK™,

(B) for p<a, Qs N P,C D.
In stage (o), we first choose P.EK* NPR,(D?) (use (*)(i)). Next, by
Claim 3.5, there are P,,(n€“2) such that P,, CP,, P,, EPR,(D?) and
[ #v=P,, NP, CD]. We know that [P, N Q| =R, for each f <a (by
(*)(iii)); hence X =U,_,(P. N Q) has cardinality = |a| + R, <2%. So for
some v,E“2, P,, N X C D. Now we let P, 4 P,

W =U{P,: a<2%} is as required.

3.7. ConsTRUCTION. We choose #; € “w for i < 2% such that:
(a) fori #j, (k <w:ny(k)=n,(k)} is a finite initial segment;
(b) n:(k)> p (p a fixed natural number).

We then let

D} = {vE“w: for every large enough k, v(k) = n;(k)};
D= U D
A =B\D".

(c) D’ contains no perfect set.
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3.8. LEMMA. With B = “w, let.

L¢ = {{Dy, D,): for some i < 2% and open « (a subset of 4) D,
and D, are dense subsets of «N D]},

L% = ((Dy, D,): for some open «, D,, D, are dense subsets of D" N « but
fornoopen ' C wandnoi <2%areD,N ' CD],D,N «' C D}}.

Then some W separates {D : DEL*} from {D : DEL?}.

Proor. Of course, we use the criterion (*) of 3.6.
We let for distinct v,

k(o ..., vig)=Min{k: vl k,..., vl kare distinct}.

Let
K* ={P:PEPR,(J) and for every distinct v, ..., v;,EP
Ecun(vy, ..., Vi9)}
where: F cun(vy, . . ., Vo) iff Vo, . . . , VioE A are distinct, and for some i < 2%, for

every k > k(v,, . . . , Vo), for at most one / = 10, v/(k) # n,(k),

K~ ={P: PEPR,() and for no distinct v;, ..., v, EP,
Ecun(vg, ..., Vio)}.
Let us check the conditions of (*) of 3.6.

Condition (i): Solet 5EL“, «C Aopen, i <2, D =(D,, D,) and D,, D,
are dense subsets of « N D!. We define by induction on k <, yi, Z, Z;, My
such that:

(1) Z,is a subset of D, U D, with exactly k + 1 elements,

Q) m <, m <myyy,

(3) forevery vEZ, N (D, U Dy), v ! [my, w) = n; | [my, w),

(4) for every distinct v, v,EZ;, v, my # v, my,

(5) WEZi, %E€EZy 11— Zi (50 Zy 1y = 2, U {2)),

6) zt(me +2)=y, M (m +2),but z, €Dy,

(7) forevery k, D’€{D,,D,} and yEZ,,

for infinitely many [ >k, y, =y, z; €ED".
There are no problems in doing this, and we let

t Of course, the number 10 has no inherent significance; it just means that the author was too
lazy to check the minimal number needed.
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P"é‘d( U zk>.

k<w

Now U, ., Z, is dense in itself (by (2) m, > k so by (6) and (7) this holds).
Hence P is perfect. Also P — U, Z, is disjoint from D" and, as each D,, D, is
dense in P (see (7)),

c(D,NP)y=ci(D,NnP)=P.

Lastly PEK™, so P is as required.

Condition (ii): We assume (D,, D,)EL®, Q €PR,((D,, D,)). We should
find a perfect Q' C Q, Q'EK".
As (D, D,) € L’ there is an open « such that D, D, are dense subsets of «,
and fornoopen «’ C « and i <2®are D, N «/, D, N «’ dense subsets of D;.
Case A: Forsomei #j(<2%)and open ' C «, D, N «’ N D!isdense in
«'NQ,D,N «' N Djisdensein 2’ N Q.
We define by induction on k < w a function /4, such that:
(1) hy: *2— "W for some m(k) <k,
(2) for n€*2, hy(n) < h(n~(1)) for I =0, 1 (so m(k) <m(k + 1)),
(3) h(n7(0)), A (n~ (1)) are incomparable,
@ (Ve <vaveQ N &),
(5) for every n €%+ 12 there are /,, /, such that:
(@) lgthi(n 1 k) <l <l <lg(hi4,(1),
(ii) for no i, by (M) = mi(ly), A r(n)(R) = mi(0).
There is no problem to do this. Note that if 4,(#n) is defined (and satisfies the
relevant parts of (1)-(5)) then we can choose v,€ Q, n <v,. Let k, be such that
ko> 1g(n) and [ky = k <w= n;(k) # n;(k)]; choose v,€EQ N («’ N D]) such
that v, ko =v,! k. Let k; <w, k; > k; be such that v,(k,) = n,(k,). Choose
nEQ N (&' NDJ), vt (ky+1)y=v!(k +1),and let k, <w, k, > kj, be such
that v,(k,) = n;(k;). Now v, 1 (k; + 4) is as required from A, ,.,(n"{/}) in (5).
Now Q' = {v € “w : for some n € “2 for every k, h(n ' k) <v} is as required
(remembering that {n; I /: 2%, / < w} forms a tree).
Case B: Not case A. For some / €(1, 2} and open «’ C «, for every open
«” C «: for infinitely many i <2®,D,N «” N D! # &.
We then define, by induction on k < w, a function A, satisfying (1)-(4) (from
case A) and
(5) for every k there is m such that:
(a) for every n€**'2, Ig(h(n ' k)) <m <lg(hy . (n)),
(b) among (A, (n))[m]: nE**'2) there are no two which are equal.
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Condition (iii): LetPEK*,Q €K~ .Weshould provethat |[P N Q| = R,.
Really checking the definitions we see that, in fact, |[PN Q| = 11.

Condition (iv): Easy.

3.9. LEMMA. For any two-place symmetric function R from 2% to
{ «: «C “w (regular open set)}, we can separate:

L* = {(Dy, D,): there are i # j, such that: «C R(i, j), D, is a dense
subset of D] N « and D, is a dense subset of D] N «},

Lb = {{D,, D,): for some open « and i # j(<2%), «N R(i,j)= &
and D,, D, are dense subsets of « N\ D], « N D] respectively},

by some W C “w — D'.

Proor. Of course, we shall use the criterion of 3.6. We let PEK™ iff:
P C “w is perfect, and for some i # j, P C R(i, j) and:
() for every distinct vy, ..., vt € P:
(a) for infinitely many k < w,

volk) = vi(k) = - - - = vo(k) = n;(k);
(b) for infinitely many &k < w,
vk)=v(k)= - =vgk)= ’b‘(k);

(c) if vyt k, ..., vl k are distinct then for at most one / < 10,

vi(k) € {ni(k), n;(k)}.

PEK™ if P C “w is perfect and for some i # Jj,
PN cl(R(i, ) =& and (*) above holds.
Let us check the conditions of 3.6.

Condition (i): The same proof as in Lemma 3.8, except that in the
definition of Z, we replace condition (3) by
(3 (a) forevery vEZ, N Dy, v [my, w) = ni[m;, w),
(b) forevery vEZ, N Dy, v I [my, w)=1n; T [my, w).

Condition (ii): We use the proof of condition (i).

Condition (iii): So assume P,€EK*, P,EK~. So there are i, #j, <2%
witnessing P,€K"* (in particular P, C R(i,,j;)) and there are i, # j, <2%
witnessing P,€ K~ (in particular P, N R(i,, j,) = & ). As R is symmetric and
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{ii, 1} # {i» j2}, by symmetry assume 5, & {/}, /,}. Suppose |P,NP,| Z11.

Choose distinct vy, . . ., v;o€ P, N P,, and we shall get a contradiction.
By the choice of {i,, j,}, for infinitely many k,
vo(k) = vi(k) = - - - = vo(k) = n,(k).

But as i, ¢ {i,,j;} for every large enough k, n, (k)€ {n,(k), n,(k)}. Now by
(c) of () of the definition of K*, those two facts contradict PEK™*.

Condition (iv): Easy.

3.10. ProOF OF CRITICAL LEMMA 1.2. Really, the choice of (D} : i < 2%)
was done. We shall write down the formulas and then 3.8 and 3.9 (via 3.7) will
show that the conclusion holds (don’t worry for “regular”, 3.8 by 1.1A). (Use
3.8 for y,, v, and 3.9 for y..)

V(e X,D; W) E 4N XCDAaCd(a)a(VX, Xy, )

[if ¢C e X,X,C ¢nX are dense then there is a perfect P,
P= Cl(Xl N #)=Cl(X2 N 0‘) and P — (Xl U Xz) - W],

def

Yo, X, D; W) = (4, X, D, W)A(V 2C 2)(VY)

[ifYC zisdensein o, YN X = then 1 y,(4, XV Y,D, W),

W4, X, Y;D, W) € yy(, X, D, WyAuy(4, Y, D, W)A aN XN Y =
/\(VXb Yb ”)

[if eC 2, X, C X, #N Xisdensein #, Y, C N Yis dense in « then there is
a perfect P, P — (X, U X,)C W, P =cl(P N X,) = cl(P N X,)].

We leave the checking to the reader.

Concluding remarks

What about B C R which is not p-modest? I.e. there are D¥*,...,Df C B
such that, letting D* = U/_, D¥, A = B\D, there are P €Pr,(D) for B, but for
no PEPr,D is P C D. By replacing, for notational convenience, B by some
subspace, we get “"w C B C “?w, forl=1,...,p—1;

D, ={n€“>w: max(Rang n) = [},
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p—1
Dp =2>p\ U D[.
1=1

We define D} (i < r') as before.

There are minor changes in the proofs of 3.8 and 3.9. We replace L* by
{D*"D : DEL"}, K* by K* N Pr(D*). In the proof of condition (i) during the
proof of 3.8, we add to (5):

for [ =1, p, for some m €(m,, m ), z, ' mEeD}.

We change similarly the proof of condition (ii) and of 3.9.
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