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ABSTRACT 

The second-order theory of the continuum in the Cohen extension of a set- 
theoretic universe is interpreted in the monadic theory of the real line and 
may be interpreted in the monadic topology of Cantor's discontinuum as well. 

Introduction 

Assuming the Continuum Hypothesis (CH), Shelah [Sh 42] proved the 
undecidability of the monadic second-order theory of the real line by interpret- 
ing true first-order arithmetic in it. But the monadic theory of the real line 
happens to be more expressive ([Gu 2], [GuSh 123], [GuSh 143]). In the last of 
the three papers, the second-order theory of the continuum in the Cohen 
extension of the universe has been interpreted, under CH, in the monadic 
theory of the real line as well as the monadic theory of any non-modest short 
chain. In this paper, we get rid of CH. 

To simplify the exposition, we treat the case of the real line only. For the 
reader's convenience, the proof is self-contained. It is based on the notes of 
lectures in Rutgers and Jerusalem in Fall 1986. 

NOTATION. ( W e  work in the topological space '°to rather than in the 
standard real line.) 
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`oto has the Tychnonov topology (considering to as a discrete space). 
u,a denote non-empty regular open subsets (of °'co, i.e., they are equal to 

the interior of their closure). 
el(A) is the closure of A. 
M x  (for a topological space X) is the model (~(X),  ___, el) where ~(X)  is 

the power set of X, ___ is inclusion, and cl is the closure operation. 
We let X, Y, Z, Tbe monadic variables for a subset of °'co, X =  Y ifftheir 

symmetric difference is nowhere dense and X c_ * Y i f X  - Yis nowhere dense. 

§1. The basic interpretation 

1.1. DEFINITION. (1) For any formula ~0( u, d) (not necessarily monadic) 
let 

val,~0( u, a) = U{ u : u open regular subsets of`oto, and '°co ~ ~0( u, a)}. 

(2) We call ~0( u, d) regular ifval ~o( u, d) is open regular; ~o( u, ~) is regular 
if every ~o( u, a) is. 

(3) We call ~o( ~, XI, . . . , Xk; a) regular (in u, XI . . . , Xk) if 

v U  VXl  . . . . .  xk v x f  . . . .  ,x'~ x ~ n  , ~ - x ; n  ~--. 
! 1 

q,( ~, x l , . . . ,  Xk; a ) ~ o (  u, Xf , . . . ,  X~; a)]. 

1.1A. OBSERVATION. (1) ~o ' (u,a)--(V u'c_ u ) (3  u"c_ u')q)( u", a) is 
always regular and val,~o( u, a) ~ val,,q)'( a, a) for every a. 

(2) ~ot(f. .¢,X, . . . .  , X k ; Y )  de.~_f (Vg~t C g~) ( 3  /~ttC ~/) (3X~ . . . .  ,X~) 

[AP=~ XfN u " ~ X l n  U"AfO(U", X~, . . . ,X~;y) ]  is always regular in 
, , ,x ,  . . . .  xk. 

(3) We will assume without saying that we regularize our formulas this way. 

1.2. LEMMA. There are regular monadic formulas ~ua(u,. . .) ,  ~b( u . . . .  ), 

~c( u , . . . )  and a sequence (D[ : i < 2 ~o) o f  dense countable pairwise disjoint 

subsets of°'to (we let D' = U{Df:  i < 2~0}) such that: 

(1) for  some Wa C_ '°CO - D ' , f o r  every X C_ D' ,  

val ¢ ~ ( e ~ , X ; D ' , W a ) ~ V a l , , ( V  u O X C  u N D O ,  

(2) for  some Wa C_ '°co -- D r, for  every X c_ D r, 
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val ~lb(~,X;Dr, Wa)--val (V t a~nX= ~ADD,  

(3) for every symmetric two-place function R from { i : i < 2 a o }  to 
{ ~c_ '°09: ~ open regular} U { ~ }, for some subset W~ of '°to (and Wa 
as in (2)), for every X, Y c_ D', 

val ~Uc( ~, X, Y; D', Wa, W R ) = U  {g: for some i v~j, ~c_ R(i,j), 

 nx= r, Y =   nDf}. 

PROOF. This is presented in Section 3. 
Note we can agree R(i, i) = ~ .  

1.3. CONV~NTIOr~. Let (Dr : i < 2 ~0) be as in 1.2, Wa, WR be as in 1.2(2), 
1.2(3) respectively. For R a symmetric two-place relation on {i : i < 2~0}, we 
identify it with the function R': 

R,(i,j)=J°'to i f /v~j ,  ~R[i,j] 

otherwise. 

1.4. CLAIM. There is a finite sequence ff/z (of subsets of'°og) and regular 
formulas ~,u, 9ze, ~suc, Cad, ~ord, ~ml such that: 

(1) for X c__ °'to, val,[¢nu( ~, X; I47'°)] - -  U{ u: for some k, ~ n x = n D~ } 

[the intended meaning is that X represents a natural number]. 

(2) forXC_ ~'to, val [tpze(~, X; 143°)] - -  U { ~ :  ~ n x =  ~ND6} 

[the intended meaning is that X represents zero]. 

v a l  [~,u~ ( ~, X, Y; if/o)] - -  U { ~" for some k, ~ N X = ~ n D/,, 
(3) 

~ N  Y =  ~AD~+, )  

[the intended meaning is that Y is the successor of X, i.e., the corresponding 
numbers are like that]. 

val,,[gad( ~, X,, X2, X3; if, o)]-- U t ~ "  for some kl, k2, k3 < 0), 
I _  

(4)  3 1 
ks = k2 + kl and A ~ n Xt = ~ N D~,} 

I = 1  J 
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[the intended meaning is addition]. 

(5) val [~Oo~(~,X; If/°)] = U { ~ ' f o r s o m e i , ~ N X =  ~ N D : }  

[the intended meaning is that X is an ordinal, i.e., represents one]. 

val,,[qml( ~, XI, X2, X3; if/o)] ~ I.J t ~ "  for some kl, k2, k3 < co, 
f 

(6) 
k3--- k2 X kl and A ~ N XI = ~ N D~, 

I - 1  

[the intended meaning is multiplication]. 

PROOF. Easy (was done in [Sh 42]), but here are some new details. Let 

R1~c = {{k, co + k } "  k < t o } ,  

R,2~ = {{k + 1, a~ + k}- k <co},  

and, for I -- l, 2, 3, 

R~d = {{C03(I + k3) + 0)2(I -F k2) + co(l + kO, kl)" 
k3 = k2 + k~ are natural numbers), 

Rtm,= {{oj3(1 + k3) + o)2(1 + k2) + ~o(1 + k,), kl)" 

k3 = k2 X k~ are natural numbers}. 

Let W'~ m = WRy, W,~d = W~,  W~m~ = WR~ for m = 1, 2, l = 1, 2, 3. Let 

n<:o) 

I,~ ( Dr, D~,D:c, W., W~¢, W~.¢, WId, ' = W'm~)~-~,2,3. 

Now we let 

~,,(~, X; fro) ~ [~n xc_ D~ ^~,~(~, ~nX;  W.)], 

,~o(~, x;  if, o) ~ [ ~ n x =  ~ n  D6I, 

¢,,c( ~, X, Y; if/o) = [~nu(/~, X; I~ :0) A ~nu( ~, Y; l~°) A ( 3 Z)[~ord (/~, Z; l/~ ''0) 

A ~ N Z C_ D r - D~ A ~c( ~, X, Z; WRy) ̂  ¢c( u, Y, Z; l'l~2)]]. 

Similarly for q~,d and ~Pa,- 

1.5. DEFINITION. Let the monadic formula 0,( ~, 7=) say that 7: satisfies all 
reasonable properties of what ff, o satisfies in ~ (we delay the question of"every 
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natural number is standard"), i.e., lg(7 z) = lg(if/°) and 0~ is the conjunction of 
the following formulas (all saying what occurs inside ~ only): 

(1) every natural number has a unique successor, i.e., 
(VX)[~,~(~, X, 7~)~(3  Y)~s~c(~, X, Y, 7z)] and 
(V X)(V YI) V Y2[tPsu¢( ~, X, YI)^ ~su¢(~, X, ]"2, T)--. Yt M u=-- Y2 M ~]; 

(2) a natural number is a successor iff it is not zero; 
(3) every pair of natural numbers has a unique sum; 
(4) every pair of natural numbers has a unique product; 
(5) x - F ( y  -F 1)----(x q - y ) +  1, x + 0 = x ;  
(6) x × ( y + l ) = x × y + x , x × 0 = 0 ;  
(7) addition and product are commutative; 
(8) x + l = y + l i m p l i e s x = y .  

1.5A. CONVENTION. Omitting u in 0~ means taking '°09. Similarly every- 
where else. 

1.6. CLAIM. (1) ~ 0~[I~ °] (for the l,f/° from Claim 1.4). 
(2) If ~ 01[ u, if'] then we can find D, (n < to) pairwise disjoint such that: 

(a) Cze( ~, Do; if'), 
(b) ~.u( ~, O,; if'), 
(c) ~su¢(~,D.,D.+l; if'), 
(d) ~,a( ~, Dn, Din, Din+,; I4~), 
(e) ~ml( e~,D,,D,,,,D,,,x,; if"). 

(3) IfD~ (n < to) satisfies (a), (b), (c) then A,<'o D, N u----D'~ M a. 

PROOF. Easy. 

As we have said, we desire to express "ff.o code standard natural number only". 

1.7. DEFINtTION. Let 02( ~, 17) say that, hereditarily in u: 

01(~, I~)A 7(3  17', ~')[ u '  C__ ~A 0~(~ ', r ' ,  Y)A 0b(a ', Y', Y)] 
where 

ob( l,~ ' ~,, f)clef 01(~ ' ft) A(V lg, Xl, X2)[(ffsuc( ~,X2, Xl; ft)....~ 

(3Xf ~ Xl) (~X~ ~ X2)~o$.c(g#, Xf, X~; Y)], 

o°( ,,, f )  (v x; f,)--- ( 3 x')(x c x'; f)]. 

1.8. CLAIM. (1) k 0211~]. 
(2) If ¢ 02[~'] and/9. (n < to) are as in 1.6 then for every X 
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val,,~Onu( u, X; I , f ' ) ~ v a l  V ( a: f) X = u 0 D,,). 
n 

(3) The parallel of  (2) holds for 02( ~, I~). 

PROOF. (1) Immediate.  
(2) If not, let X _ '°09 be such that some open regular uo is disjoint from 

v a l (  u n X = a t3 D,) for every n but uo ___ val,~nu( ~, X; W). 
Fix uo, X. We define by induction on n, X~ c_ ao such that ~ c _  

v a l  q~(u,X.; I~), a0__.val ~s~c(u,X,,X~+~; W) and u0 is disjoint from 
v a l (  u N X, = u (~ Din) for every m (X0 = X, of course). Let X~ __. X, be 
countable and dense in uo, Ak<, X; N X~ --- ~ .  There is an autohomeomor-  
phism F of ,o09 taking D~ to X~ for n < 09 and ~ to itself (Cantor Theorem). 
Now F(I47,o), uo can serve as I 7', u contradicting the second part of 02(if'). 

1.8A. REMARK. Applying this to other topological spaces, we can replace 
Cantor Theorem by strengthening of 1.2. Similarly in 2.10. 

§2. Interpreting the universe after forcing 

2.1. DEFINITION. Let Q be the forcing notion: open regular subsets of'°09, 

with the order: the converse of inclusion (this is the Cohen forcing). 

2.1A. CONVENTION. If" denotes a sequence such that ~ 02[ff'], D,(ff ' )  
(n <09)  are as in 1.2, D ( W ) =  (D,(W) : n <o9) .  In this section D denotes a 
09-sequence of dense pairwise disjoint subsets of '°to. 

2.2. DEFINITION. (1) We say that X/9-represents in uo a Q-name n of  a 
natural number  if: 

(a) uo---- ~ N val, q~nu( ~, X; I~), 
(b) [[-Q "n is a natural number",  
(c) for every k < to and u c_ uo 

[~-Q "n = k"  iff u N X------ ~ ~ D~. 

(2) If  go----- o,09 we omit it. 

2.3. CLAIM. (1) Suppose ~ 02[I~]. ~ ~n,(U, X; I~) iffX/)(ff')-represents 
in u some Q-name of a natural number. 

(2) If X D-represents in ~ a Q-name n (of a natural number), then X D- 
represents n in every ~ '  _C a. 

PROOF. Suppose ~ ~.~( ~, X; I~). We know that 
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K = { a : e,__. u and a n  X = a n  D.(W) for some n = n(a)} 

is such that 
(.) (V ,~,_c ,~)(3 ,~,,_c ~ ' ) (u"eK) .  

Let { a~ : a < A 0} be a maximal subset of  K such that any two members are 

disjoint. Clearly U~ a~ is a dense subset of  ~ [by (.)]. We define n by 

n is n if, for some a, a~ is in qe  and a~ N D,(W) = a~ n X 

(G e is the generic set) and zero otherwise. 

Easily, n is a Q-name of a natural number and X D ( W)- represents it in ~. The 

other direction is easy too. 

2.4. CLAIM. Suppose ~ 02[ u, l~]. I fn  is a Q-name and u [I-e "n a natural 

number", then some X/)(I~)-represents  n in u. 

PROOF. Let { ~ : a  < a0} be a maximal antichain of members of Q, 

~ c u, u~ force a value to n, say n(a). So { ~ : a < a0} is a family ofpairwise 

disjoint regular open subsets of  ~. Let X = U~ ( ~ n/),t~) (I~)). 

2.5. CLAIM. Suppose ~ 02[W]. If for l = 1, 2, 3, XtD(W)-represents in 

the Q-name n.t of  a natural number, then for every a _C u: 

(a) a Ika "n, = 0" iff~,,~( a, X,; W), 
(b) a Ika"n., =n=" i f f a n X , ~  anx~ ,  
(c) a IkQ "n, + l = n.2" iff~Osu~( a, X,, X2; if'), 
(d) ~, IkQ "n, + n.2 = n; '  iff~'~d( ~', X,, X~, X,; # ) ,  
(e) t ,  Ika "n, x n~ = n~" iff~o.,,( ~,, x,,  x~, x~; #). 

PROOF. Easy (from definition). 

Next we deal with reals, i.e., sets of  natural numbers. 

2.6. DEVINITION. We say that Y/9-represents in u a Q-name q of  a set of  

natural numbers if, for every a_C u and k < o9, 

(a) a l ~ - o " k ~ q ' i f f  unDk C_ * an  Y, 
(b) ~,lko"k~a." iff an Y n O , - - ~ .  

2.7. DEFINmON. ~0~( u, Y; i f ' ) i s  

(v~c  ~)(vx)[e..(~,x; #)-*(3 ~,_c ~ ) ( ¢ n x c  Yv ~ ' n X n  Y =  ~)1. 

2.8. CLAIM. Suppose ~ 02[ u, I47']. 
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(1) ¢ ~0rl( U, Y; If') iff Y D(W)-represents in u some Q-name of  a set of  
natural numbers. 

(2) Every Q-name a of a set of natural numbers is /5(ff ' ) - represented by 
some Y. 

(3) If  Y/)-represents in u a Q-name q of  a set of  reals then Y /)- represents q 
in every u '  _ u. 

PROOF. (1) Suppose ~ ~0rl( u, 17, I~). Define q by: 

(.) k ~ q  iffthere is a___ u, u~GQ (the generic subset) and oN Dk(I~')___ Y. 
It is easy to check that it is as required. For the other direction suppose X 

/)(l~')-represents in u some Q-name q of a set of natural numbers. Now for 
every a___ u and X such that ~o.u( ~,, X; I~), first find a0 _ a and k such that 

a0 (~ X = a0 O Dk(I~) (see choice of ~on,), next choose a t _  ao such that 
at I]"o " k E q "  or a~ I]-Q " k S q " .  If  the former holds then (by Definition 2.6) 
al N Dk(l~) C_ * al N Xhence,  for some a'  c_ at, a '  N Dk(I~) _C at N X; so a '  is 
as required in the definition of ~0rl. If  the latter ( at I[-Q "k $ q") holds, then 
(by Definition 2.6) at O Dk(I~) N X ~ ;  so for some a'  _ a, a' O Dk(l~) O 
X = f~ and so a' is as required in the definition of ~Or~. 

(2) Let, for each k, ( ~ : a < ak) be a maximal antichain of  Q, such that 

IFQ "k ~ q" or ~ IFQ "k ~ q". Let 

• "k ~a" } .  Y= U(ok(ff )n uk" k <to, a<ak, U~ IFQ . 

As (D,(ff ' )  : n < to) are pairwise disjoint, Yis as required. 
(3) Trivial. 

2.9. CLAIM. Assume ~ 02[I~], X D(W)-represents in u the Q-name n. of  a 
natural number,  and Y D (W)-represents in u the Q-name q of  a real. Then for 
o C  ~ :  

af~XC_*Y iff al~-"nEq'. 

PROOF. Check definitions. 

2.10. DEFINITION. We say that 
Q-name d of  a set of  reals if: 

(a) u II-Q "d is a set of reals"; 
(b) 02[ ,,, if'*]; 
(c) u f) D,(I~*)___*D,; 
(d) TFAE for all Q-names q of a real and a__ u: 

a IFQ "a cA" ,  
([~) there is X such that 

if'+ = if'*^ (W) /)-represents in u a 
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(i) ~ ~o~(u,X; ff '*)A(V e'C_ ~,)'~ou(a',X; if'*), 
(ii) for every u' _ u, and k < 09, 

~,' IF-e"k~a" iff~ ~u¢(~,',Dk(ff'*),X;D*, W~*, W) 

(D*, W a * -  from If'*). 

REMARK. On ~U¢ see 1.2(3). 

2.10A. CLAIM. Suppose ~ 02[ ~, if'*]. For every Q-name4 of a set of reals 
there is W such that l~ + =  I~*^(W)/)( l~*)-represents  A in ~. 

PROOF. Choose countable dense D~' _ Dn, and so there is an autohomeo- 
morphism F of'°co taking D~ to D~'. Let {q, : a < 2 ~o} list all Q-names of reals. 
For each a, klet { uk, c : ~ < (~} be a maximal set ofpairwise disjoint members 
of Q such that 

uk, c I}-Q "a~E4 and kEq~". 

Define a two-place function R from 2x0 to Q: 

R(co + a , k ) = R ( k ,  co + a ) ~  I.J( k . 

(i.e., the interior of the closure of this union) and 

R ( a , # ) =  ~ when (a < co ^fl < co) v (a > co ^#  > co). 

Now we apply 1.2(3) and get WR. Lastly W de=f W~ is as required. 

2.11. DEFINITION. Let ~gsrl(~ ~ I'V +, ~l ~r) (where If ' + =  ff '*^(W)) be the 
conjunction of the following formulas: 

(a) 02[ if*l, 
(b) 02[ if'l, 
(c) ( V X)[~.u( ~, X; if'*)--- ( 3 Y)[X _c * r A ¢,,,( U, Y; if')]]. 

2.12. CLAIM. Suppose ~ 02[ ff']. W + D (W)- represents in ~ a Q-name 4 of 
a set of reals iff ~ ~srl(~, if'+, if')- 

2.13. CLAIM. Suppose ~ 02[ ~, If'], YD(W)-represents the Q-name a of a 
real in u, and if'+ D(ff')-represents the Q-name 4 of a set of reals in ~. 

Then for a _  

a II-"qE4" iff ~m(tZ,  Y, if'+, If') 

where ~m~m formalizes (d) of 2.10, i.e., 
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2.14. DEFINITION. ~0rnem ( U, Y; if'+, if ') is (where I~ + = ff'*^(W)) 

( 3 X)[~0ord(U, X; I/ '*)^(V ~,__C u)7~o.u(a, X; if'*) 
^(V ~_C ~)(V Z,, Z2)[[~0ou(,', Zl; if')A ~0..(~, Z2; ff~*)A [Z~ ___ Zl]] 
- - [ a n  Z, C_ * Y ,~, g¢( a, Z~, X; D*, Wa*, W)l]]. 

PROOF OF 2.13. Check. 

2.15. DEFXNITmN. We define the forcing language L (for second-order 
theory of the continuum under the forcing Q) (it is a slight variant of the 
standard one). We have variables of three kinds: n (Q-names of natural 
numbers), a (Q-names of reals, i.e., sets of natural numbers), and A (Q-names 
of sets of reals). We have the individual constant 0, function symbols for 
addition and multiplications of natural numbers, the successor relation on the 
natural numbers, equality between natural numbers, and two membership rela- 
tions: n E a, a CA (so a~ = a.2 is not an atomic formula). From the atomic formulas, 
the formulas are generated as usual (with three kinds of quantifications). 

REMARK. We do not distinguish strictly between Q-names and variables 
over them. We know: 

2.16. THE FORCINC TrIEOREM (in this context). For any formula  

O(n.1, n.2 . . . . .  a.l, a.1 . . . . .  A.I,A.2, . . . ) E L  and a ~ Q ,  TFAE 
(a)  ~, IFQ 0(n~, n.2 . . . . .  a~, a.2 . . . . .  d~, 4 2 , . . . ) ,  
(~) for  any G c_ Q generic over the universe and  such that a E G, i f  nt = 

n.t[G], at = a.t[G], At = A.t[G] then O[nl, n2 . . . . .  al, a: . . . . .  Al, A2 . . . .  ] 

holds. 

2.17. MAIN LEMMA. For any  formula  O( n~ . . . . .  a~, . . . , A t , . . . )  ~ L we can 

compute  a formula  ~oo( u, X~, . . . , Y~ . . . .  ; ff'~', . . . ,  i f ' )  such that: 

E) Suppose [[-Q 02[ u, if'] and X~ D(W)-represents  the Q-name ~ o f  a natural 

number  in u, Y 19( ff')-represents the Q-name ~ o f  a real in u, and  if't + 

D (W)-represents the Q-name ~ o f  a set o f  reals in u. Then 

u I[-o O(n, . . . . .  a , , . . . , A , , . . . )  i f f ¢  e ~ o o [ u , X , , ' " ,  Y , , . . . ;  I / f + , . . . ,  I~]. 

PROOF. By induction on 0. 
For atomic formulas: see 2.5 (on formulas on natural numbers), 2.9 (on 

n Ca)  and 2.13 (on a E4).  
For Boolean combinations of atomic formulas there are no problems. 
For 0 = V n 0l use 2.3, 2.4 and the induction hypothesis. 
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For 0 = V q 01 use 2.8 and the induction hypothesis. 

For 0 = VA 01 use 2.10A, 2.12 and the induction hypothesis. 

2.18. CONCLUSION. For every sentence 0 in the language of  the second- 

order theory of the continuum we can compute a sentence ~0" in the monadic 

theory of %~ such that: 

I['-q "0" iff M<~) ~ ~*. 

PROOF. By 2.17 there is ~0( ~, if ') as there. Let 

=(3 e?)(v if')]. 

As Q is homogeneous and is Cohen forcing, we finish. 

§3. T h e  combinator i c s  

For diversity, we do not copy [GuSh 143]. 

3.0. CONVENTXON. B denotes a Hausdorffirst countable topological space 

with < 2~o open subsets (or just _-< 2~o perfect subsets) (the main case is 

B = '°co). A will denote a subset of  B, D = B \A .  The reader can restrict 

himself to the case B = ~to, A = (~ /~B:  ~/not eventually constant} without 

great damage (just lose, e.g., non-modest subsets of  ~%o). 

3.1. NOTATION. (1) P _C B is perfect in A if it is dosed s.t.: i f x E  g n P, 

Ix EAv x not isolated] then ( 3 Pl, P2, ~l, ~2) 

[ ~ , n  ~2--~AA2-~=(Pt- e z t A e t O A ~ A P t = c l ( P t \ A ) A  ~ t -  ~)1 

a n d P  AA ÷ ~ .  
(2) I f / )  = (Dz: l < n),  we let 

PR~(/9) = {P: P _ B is perfect in A, and cl(P n Dr) D P O A for l < n }. 

(3) P ~ ( W , / 9 )  with D = (Dr: l < n ) as above means: there is a P, perfect in 
A , A  APE.  W U UtDt, PEPR~( / ) ) .  

(4) In (2) and (3) we allow one to omit the superscript n. t 

3.2. CONVF.N'rION. /~ denotes a finite sequence of  subsets of  B \ A - ~ D  
such that cl(Dn) _ A U {x E D  : x not isolated}. 

t Formally, PR was not defined for an infinite sequence, but the definitions and proofs work for 
countable sequences; however, we do not need them as the formulas are finitary. 
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3.3. DEFINITION. We say that we can separate { D T : i < a  a} from 
{/)~ : i < o?} inside A, if there is W __ A such that 

(a) for i < a  a, PrA(W,/)r), 
(8) for i < a  s, 7PrA(W, 

Why does assuming CH simplify matters? 

3.4. CLAIM (CH). Suppose { / ) ~ : a < a a } ,  { / J ~ : a < a  b} are given, 
[aal,lab I < 2aoand 

(*), if P  PRA( g), Pb PR(D ) ( a<aa , / /<a  b) then: for ~ an open 
subset of B, u N pb M A ~ ~ implies u N pb N A ~ P~ A pb; 

(*)2 Q - D is not meager (as a topological space in the induced topology) 
when Q E PRA ( ~ ) (or even Q E PRa (/J~) for some 3, implies Q N A not 
included in the union ofP~ c__ A (l < co), Pt perfect in A). 

Then we can separate {Dg : a < a ~} from {Dab: a < a b}. 

REMARK. We use only the existence of a family of < 2~0 perfect separable 
sets which is dense enough in the family of perfect sets. This is relevant to 3.6 
too. 

PROOF. Let {Qj: i < 2~0} list the perfect subsets inA (of B). We know that 
w.l.o.g, a ~, a s < 2 a0. 

We choose, by induction on a, P~ such that: 
(a) P, ~ PRA (/)D, 
(b) if// ,  3' < a  and Qp ~PR(/)~) then P~ N Qp _ D. 

If  we succeed we shall let W = U { P ~ : a <  2s0}. Then requirement (a) of 
Definition 3.3 holds by demand (a). Next, (1~) will hold; for, suppose 
PrA ( W,/)~), so that there is P E PRA (/)~) such that P n A _C W. But there is// 
such that P = Qa, so 

w n e =  u (P, NQp)UDC U (P, NQp)UD. 
i i<p  

But I//I --< 1%, and by (*)l, Ui<j$ (P~ N QB) is a meager subset ofQp - D, but by 
the assumption above it is equal to Qp - D, so this contradicts (*)2. 

The choice of P~ is possible, by the following claim. 

3.5. CLAIM. I fP  E PR o ( ~ ), Dt C_ P is not dense in P for I < l ( . )  < to, then 
there are (P~ : v E °'2) such that 

(a) P~ __. P,  

(b) P~EPRA((Dt: 1 < 1(.))), 
(c) P~ n P. C I,.J~ Dl for v ~ ~/. 
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PROOF. AS in [Sh 42] §7. 

3.6. CLAIM. A sufficient condition for the existence of  W separating 
L a = {/)~ : a < a  ~} from L b = {/5~: a < a  b} inside A is: 

(,) there exist families K +, K -  of  perfect subsets of  A such that 
(i) PRA(/5 ) n K ÷ ÷ f o r a < a ' ;  

(ii) if Q ~ PRA (D~), (a < a b) then there is a perfect Q' _ Q such that 

Q ' ~ K - ;  

(iii) if Q ~ K - ,  P ~ K  + then I P A Q I < R 0  (or even just 
I P n Q o A I < x, where x is a fixed cardinal < 2~o); 

(iv) we demand that for every Q from K- ,  Q - D has cardinality 2~o. 

3.6A. REMARK. If we wish, in Definition 3.1(3), replace "A A P__ 
W tO Ut Dr" by "A n P - D __ W';  it suffices to strengthen (i) to: 

(i)~ for every a < a a there is P C_ PRA(D~) n K +, P - UtD,,at C_ "co - D. 

REMARK. Instead of  (ii) + (iii) it is enough to require: 
(ii)' no QEPRA(/)  b) is included in the union of < 2s0 many members of K +. 

PROOF. Let {Qj : j  < 2~0} be a list of  the members of K- .  We choose, by 
induction on a < 2s0, P~, P" such that: 

(tO P~EPRA(d~), P~ C_ P'~EK +, 
for# Qp n P.C_D. 

In stage (ct), we first choose P'~EK + N PRA(/)~) (use (.)(i)). Next, by 
Claim 3.5, there are P~,~(qE°'2) such that P.,~ __.P., P.,~EPRA(/):) and 
[q 4= v=*P~,~ n P.,v c_ O]. We know that IP~' n Q.¢I < Ro for each fl < a  (by 
(.)(iii)); hence X = Ua<.(P~' n Qp) has cardinality < l al + R0 < 2 ~°. So for 
some v~E °'2, P~,v n X _ D. Now we let P~ e,f p~.~. 

W = U {P~ : a < 2 ~o} is as required. 

3.7. CONSTRUCTION. We choose q, E ~'oJ for i < 2 ~o such that: 
(a) for i ÷ j ,  {k < co : q~(k) = qj(k)} is a finite initial segment; 
(b) q~(k)> p (p  a fixed natural number). 

We then let 

D[ = {v ~ %0 : for every large enough k, v(k) = r/i(k)}; 

D ' =  U Dr; 
i 

A = B \ D " .  

(c) D '  contains no perfect set. 
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3.8. LEMMA. With B = ,oto, let: 

L a = {(D~, D2) : forsome  i < 2So andopen u (a subset o fA)  DI 

and D2 are dense subsets o f  u M Dr }; 

L b = { (DI, D2) :for some open e~, D~, D2 are dense subsets o fD  r M u but 

for  no open u' C_ u and no i < 2 ~o are Dl N u' C_ D r, 0 2 (~ u '  C Dr}. 

Then some W separates { l )  : l )  ~ L a } f rom {1) " l )  ~ L b }. 

PROOF. Of course, we use the criterion (.) of 3.6. 

We let for distinct vi* 

k ( v o , . . . ,  v~o) = Min{k : v0 t k , . . . ,  v~0 r k are distinct}. 

Let 
K + = ( P : P  ~ P R A ( ~  ) and for every distinct Vo,. . . ,  V~oEP 

cun(vo, . . . ,  Vlo)} 

where: ~ cun(vo, . . . ,  Vo) iffVo . . . . .  V~oEA are distinct, and for some i < 2So, for 

every k > k(vo . . . . .  V~o), for at most one l < 10, v~(k) ÷ qi(k), 

K-  = {P: P~PRA( ~ ) and for no distinct v0 . . . . .  V~o~P, 

cun(vo . . . . .  v~0)}. 
Let us check the conditions of  (*) of  3.6. 

Condition (i): S o l e t / J E L a ,  u__A open, i <2~o, /J  = (DI, D2) andDz, D2 

are dense subsets of  u N D r. We define by induction on k < to, Yk, Zk, Zk, mk 

such that: 
(1) Zk is a subset ofD~ O D2 with exactly k + 1 elements, 

(2) m k <  to, mk < m k  + 1, 

(3) for every V E Z k  A (DI U D2), v t [ink, to) = tli t [rag, to), 

(4) for every distinct vl, v2EZk, V~ t m k ~ v 2 r mk, 

(5) yk  zk, zk  zk+l - Zk (SO Zk+  ---- Zk U {Zk)), 

(6) Zk t (ink + 2) = Yk t (mk + 2), but Zk q~ Dr, 

(7) for every k,  D ' E { D I ,  D2} and y E Z k ,  

for infinitely many 1 > k, Yt = Y, zk E D ' .  
There are no problems in doing this, and we let 

t Of  course, the number 10 has no inherent significance; it just means that the author was too 
lazy to check the minimal number needed. 
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c,(,u 
Now Uk<,o Zk is dense in itself (by (2) mk > k so by (6) and (7) this holds). 
Hence P is perfect. Also P - U~ Zk is disjoint from D r and, as each D~, D2 is 

dense in P (see (7)), 
cl(D~ f3 P) = cl(D2 f3 P) = P. 

Lastly P ~ K  +, so P is as required. 

Condition (ii): We assume (D~, D2) ~ L  b, Q EPRA((D~, D2) ). We should 
find a perfect Q'  _c Q, Q ' E  K- .  

As (Dr, D2) E L  b there is an open u such that D~, D2 are dense subsets of ~, 
and for no open ~' __ ~ and i < 2 ~o are D~ N d ,  D2 M e~' dense subsets of Dr. 

Case A: For some i ~ j ( < 2 s0) and open ~' __ ~, DL M ~' N D~ is dense in 

~' M Q, D2 M ~' M Df is dense in ~' M Q. 
We define by induction on k < to a function h k such that: 
(l)  hk : k 2-" r~Ck~to for some m ( k ) < k ,  

(2) for r /~k2,  hk(~l)<hk(rl^(l)) for I = 0, 1 (so m ( k ) < m ( k  + 1)), 

(3) hk(r/^ (0)), hk(rt ̂  ( 1 )) are incomparable, 
(4) (V~lEk2)( 3v)[hk(rl)< V ̂  v E Q  M d], 
(5) for every r /~ ~k+ ~2 there are 11,/2 such that: 

(i) lg(hk(r/r k)) < II < 12 < lg(hk+ ~(r/)), 
(ii) for no i, hk+~(tl)(l~)= r/,(l~), hk+l(rl)(12)= r/,(/2). 

There is no problem to do this. Note that if hk(rl) is defined (and satisfies the 
relevant parts of(1)-(5)) then we can choose v0 E Q, t / <  v0. Let ko be such that 
k o >  lg(r/) and [ko_- < k < to=o r/~(k) 4~ rb(k)]; choose v~EQ M (~ '  tq Dr) such 
that vl tko = v or ko. Let kl < 09, k~ >/co be such that vl(k~)= tli(kl). Choose 
v2~ Q tq ( ~'  M D}), v2 t (kl + 1) = vt r (kt + 1), and let k2 < to, k2 > k~, be such 
that v2(k2) = tb(k2). Now v2 t (k2 + 4) is as required from hk÷~(tl^(l)) in (5). 

Now Q' = {v E ,oto : for some t /E '°2 for every k, h( t / t  k) < v} is as required 
(remembering that { t/~ t l : 2 ~o, l < to } forms a tree). 

Case B: Not case A. For some / ~ { 1, 2} and open ~' __. ~, for every open 
u"  c_ u: for infinitely many i < 2 ~o, Dt f~ ~" N D r ~ ~ .  

We then define, by induction on k < to, a function hk satisfying (1)-(4) (from 

case A) and 

(5)' for every k there is m such that: 

(a) for every t /~  k+~2, lg(hk(t/ t k)) < m < lg(hk+l(t/)), 
(b) among ((hk+~(rl))[m] : t /~ k+~2) there are no two which are equal. 
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Condition (iii): Let P ~ K ÷, Q E K - .  We should prove that I P n Q I < R0. 

Really checking the definitions we see that, in fact, I P n Q I < 11. 

Condition(iv): Easy. 

3.9. L~MMA. For any two-place symmetric function R from 2~0 to 

{ ~ : ~ C_ '°co (regular open set)}, we can separate: 

L a = {(D1, D2) : there are i ÷ j ,  such that: ~ c_ R( i , j ) ,  Dt is a dense 

subset o f  Dr O ~ and D2 is a dense subset o f  D} n ~ }, 

L b = {(Di, D~):forsome open e~ andi ~ j (  < 2~o), ~ n R ( i , j )  = 

and D~, D2 are dense subsets o f  ~ n D~, ~ n D} respectively}, 

by some W c_ °'09 - D r. 

PRoof .  Of  course, we shall use the criterion o f  3.6. We let P ~ K  ÷ iff: 

P ___ '°09 is perfect, and for some i v~j, P c_ R ( i , j )  and: 

( .)  for every distinct vo . . . .  , v~o~P: 

(a) for infinitely many  k < 09, 

vo(k) = v~(k) . . . . .  rio(k) = r/i(k); 

(b) for infinitely many k < to, 

vo(k) = Vl(k) . . . . .  rio(k) = r/j(k); 

(c) if  vo r k , . . . ,  vlo r k are distinct then for at most  one I < I 0, 

vl(k)q~ {r/i(k), rb(k)}. 

P E K -  i f fP c_ "oto is perfect and for some i ~ j ,  

P O cl(R(i,j)) = ~ and (.)  above holds. 
Let us check the condit ions of  3.6. 

Condition (i): The same proof  as in Lemma  3.8, except that in the 

definition o f  Zk we replace condit ion (3) by 

(3)' (a) for every VEZk n D~, v r [mk, to) = rl~[mk, to), 

(b) for every VEZk O D2, v t [mk, to) = qj t [mk, to). 

Condition (ii): We use the proof  of  condit ion (i). 

Condition (iii): So assume P I E K  ÷, P2EK- .  So there are i~ ~ j t < 2  ~o 

witnessing P~EK + (in particular Pt C_ R(it,jl)) and there are is ÷ j 2 < 2  ~° 

witnessing P 2 ~ K -  (in particular Pz n R(i2,J2) = ~ ). As R is symmetr ic  and 
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{i~,j~) ~ (i2,J2}, by symmetry assume i2f~(i~,j~). Suppose IP~ n e 2 t  >_- 11. 

Choose distinct vo, . . . ,  V~oEP~ n/ '2 ,  and we shall get a contradiction. 
By the choice of  {i2,J2}, for infinitely many k, 

vo(k) = vl(k) . . . . .  Vlo(k) = qi2(k). 

But as i2~ {il,jl} for every large enough k, qi2(k)~ {r/i,(k), rb,(k) }. Now by 
(c) of  (*) of the definition of  K ÷, those two facts contradict P ~ K  +. 

Condition (iv) : Easy. 

3.10. PROOF o r  CRITICAL LEMMA 1.2. Really, the choice of  (D~: i < 2~0) 
was done. We shall write down the formulas and then 3.8 and 3.9 (via 3.7) will 
show that the conclusion holds (don't  worry for "regular", 3.8 by 1.1A). (Use 

3.8 for ~ ,  ~b and 3.9 for ~uc.) 

~ (  u ,X ,D;  W) d~d u n  X C_D ^ uC_ cl( u)^(VX~,X2, a) 

[if ac_ u, X~,X2C_ ~,MX are dense then there is a perfect P, 
P = cl(Xt n t,) = el(X2 n ~) and P - (X~ U X2) c_ W], 

yb( u ,X ,D;  W) d'd ~a( u,X,D, W)^(V u__. u)(V Y) 

[ifY C_ u is dense in a, Y n X = ~ then "1 ~a( ~, X U Y, D, W)], 

¥c(~, X, Y;D, W) d~d yB( u ,X ,D ,  W)^ ¢/b(~, Y,D, W)^  ~ n X n  Y = ~  

^(VX~, ]11, u) 

[ifaC_ u, Xt _C X, aM Xis  dense in a, Y~ ___ aM Yis dense in a then there is 
a perfect P, P - (X~ U )(2) ___ W, P = cl(P N X~) = cl(P M )(2)]. 

We leave the checking to the reader. 

Concluding remarks 

What about B __. R which is not p-modest? I.e. there are D* . . . . .  D* __. B 

such that, letting D* = U~_ ~ D~, A = B \ D, there are P E PrA (D) for B, but for 
no P ~ PrA/~ is P ___ D. By replacing, for notational convenience, B by some 
subspace, we get °'>09 __. B c_ o>--w, for 1 = 1 , . . . ,  p - 1; 

Dt = {r/E 0">09 : max(Rang r/) --- 1}, 
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p - I  

D v = ~>:.o\ U Dr. 
l - l  

We define Df (i < r ~0) as before. 
There are minor changes in the proofs of 3.8 and 3.9. We replace L* by 

{D*^Li • /JELa} ,  K -+ by K -+ f~ Pr(D*). In the proof of condition (i) during the 
proof of 3.8, we add to (5): 

for I = 1, p, for some m E(mk, ink+l), Zk r m EDit. 

We change similarly the proof of  condition (ii) and of  3.9. 
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